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Moments of inertia and products of inertia often need to be determined for aircraft.  As 

complex bodies, their mass properties need to be determined experimentally for best 

accuracy.  While several moment of inertia experimental techniques have been developed, 

there are few to determine the products of inertia.  Products of inertia can be easily 

determined mathematically if the angle between the aircraft x body axis and principal x axis 

is known.  This method finds the principal inclination angle by mathematically correlating 

the measured moments of inertia about a range of axes of the aircraft.  This correlation uses 

a least squares error minimization of a mathematical model that describes the ellipse of 

inertia in the aircraft’s x-z axes plane.  Results from a test conducted on a small scale UAV 

at NASA Armstrong Flight Research Center is also presented, which is an example of the 

intended application of this technique. 

Nomenclature 

Ix = aircraft x body axis moment of inertia 

Iy = aircraft y body axis moment of inertia 

Iz = aircraft z body axis moment of inertia 

Ixz = aircraft x-z body axes product of inertia 

Iθ = moment of inertia about arbitrary axis in x-z plane 

φ = angle between principal axes and arbitrary axes in x-z plane 

θ = angle between body axes and test point axes (pitch angle) 

τ = angle between principal axes and body axes 

I. Introduction 

ASS properties, specifically moments and products of inertia, are important both in the design of aircraft and 

control systems for aircraft.  These properties are constants that appear in the moment equations of motion for 

aircraft.  Moments of inertia determination methods have been studied, and several experimental methods are able to 

provide accurate results.  However, determining the products of inertia experimentally is more difficult. 

 Products of inertia can be thought of as describing the degree of symmetry of an object about a particular axis of 

rotation. Unlike moments of inertia, products of inertia for a body can be positive, negative, or zero. A zero product 

implies that the distribution of area is equal about the axis of rotation. A non-zero product means that a single 

moment that results in rotation about one axis will induce a moment about a perpendicular axis due to the 

asymmetrical movement of area. This is sometimes referred to as moment coupling or secondary oscillations.  For 

an aircraft, the assumed symmetry about the x-z plane means that the products of inertia 𝐼𝑦𝑧 and 𝐼𝑥𝑦  are assumed 

zero.  Also, 𝐼𝑥𝑧  is zero in the reference frame of the principal axis system of the aircraft, but often the aircraft body 
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axis system has an angular offset from the principal axis system.  This means that the product of inertia 𝐼𝑥𝑧  will 

often have a non-zero value, and thus it needs to be determined. 

 Techniques to find the value of 𝐼𝑥𝑧  rely on first finding the offset angle between the body and principal axes, and 

then using an analytical expression to solve for 𝐼𝑥𝑧 .  However, finding the offset angle, 𝜏, is difficult to do 

accurately.  NACA Report 4671 uses an analytical approach where the moments of inertia about the x and z body 

axes are measured, and then a third moment of inertia is measured about an arbitrary axis in the x-z plane.  The 

product of inertia is then calculated using the equation below, where 𝜃 is the angle between the x body axis and the 

third axis in the x-z plane.  This method is highly prone to measurement error, a slight error in the measured value of 

the moments of inertia can cause large errors in the calculated product of inertia value.  Experimental methods for 

determining the moments of inertia are quite accurate, but not enough that this method could be considered accurate 

for determining 𝐼𝑥𝑧 . 

  𝐼𝑥𝑧 =
𝐼𝑥 cos2 𝜃+𝐼𝑧 sin2 𝜃−𝐼𝜃

sin 2𝜃
 (1) 

 

NASA TR R-4332 presents another method to find the product of inertia 𝐼𝑥𝑧.  A single point suspension system is 

set up with a set of springs in a common plane to provide restraint in the yaw and roll directions.  An excitation of 

the yaw mode creates an oscillation motion, and the angle of the spring plane is then adjusted until the coupled roll 

oscillation becomes zero.  The angle of the spring plane can then be used to find the product of inertia.  This method 

requires a complex setup and care must be taken to ensure the springs are calibrated and pretensioned correctly, that 

no secondary spring effects are introduced, and that no extraneous oscillatory damping is present.  Also, the amount 

of mounting structure that is required could easily outweigh a small UAV.  This could greatly affect the accuracy of 

the values. 

This paper provides an improved method for determining the products of inertia and principal inclination angle 

for small scale UAVs.  A lightweight test structure is preferred due to the relatively low weight of the UAVs.  

Although the test structure is tested separately to understand how much inertia it adds to the system, an overly heavy 

structure could increase the error of the experiment.  In addition, some small scale UAVs are used for research 

purposes and the configurations of the aircraft are constantly changing.  This means that the mass properties of the 

UAV may need to be measured multiple times.  A simple rig that would not need constant modification would be 

ideal to minimize the amount of work required to retest the aircraft.  This method can be leveraged to larger aircraft 

as long as a testing rig could be designed to properly gather the data required, as described later in this report. 

Mathematically, the moment of inertia about any axis can be written in terms of moments of inertia in other axes, 

and an angle between them.  This leads to the concept of the ellipsoid of inertia, which is visually a plot of the 

moments of inertia for any axis orientation for a body through a given point.  The semi-major and semi-minor axes 

of the ellipsoid of inertia correspond to the principal axes of the body.  For an aircraft, when the x-z plane is 

assumed to be an axis of symmetry, this ellipsoid can be simplified to an ellipse.  Thus, for a given aircraft, if the 

ellipse that describes the relationship between moments of inertia about different axis in the x-z plane is known, the 

principal inclination angle can be easily determined.  For the method described in this report, generating the ellipse 

that describes this relationship requires testing the aircraft at several pitch angles to gather moment of inertia data for 

different axes in the x-z plane.  Due to its simplicity and accuracy, the bifilar pendulum torsion method, as described 

by Jardin and Mueller3, for moment of inertia determination is used.  The aircraft is tested at ten degree increments 

between -80° nose down pitch and 90°  nose up pitch.  This provides data about every ten degree increment axis of 

the aircraft.  Three tests were run at each pitch angle to ensure measurement precision.  The test rig and setup will be 

described later in this paper.  Once the data is collected, the general mathematical relationship that describes the 

relationship between moments of inertia about different axes is used to fit the data in a least squares sense.  The fit 

equation can be used to determine the principal inclination angle, which can be used along with 𝐼𝑥 and 𝐼𝑧 to directly 

calculate the product of inertia 𝐼𝑥𝑧 . 

 The results section of this paper describes how this method was used to calculate the product of inertia 𝐼𝑥𝑧  for a 

small scale UAV at NASA Armstrong Flight Research Center.  The setup rig requirements are shown, and the 

calculation method and results are discussed. 

II. Determining the Principal Inclination Angle 

The aircraft body axes are defined using the conventional aircraft coordinate frame located at the center of 

gravity.  A principal axes coordinate frame also goes through the center of gravity, and is defined as the set of axes 

where the inertia tensor is diagonal, or the products of inertia are all zero.  The y body axis, pointing out of the right 
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wing, is coincident with the y principal axis because of the aircraft’s symmetry along the x-z plane.  This allows our 

analysis of the ellipsoid of inertia to be simplified to looking at the axes lying on the x-z plane. 

A. Mathematical Representation of Moments of Inertia About Axes in the X-Z Plane 

Moments of inertia and the product of inertia about a set of axes, x and z aircraft body axes for example, 

coincident with the center of gravity can be expressed by the following integrals.   

 

  𝐼𝑧 =  ∫ 𝑥2 𝑑𝑚 (2) 

 
  𝐼𝑥 =  ∫ 𝑧2 𝑑𝑚 (3) 

 Note that these equations are for a 2D shape and m is a generic mass element.  If the aircraft body axes are used 

as a reference and a new set of orthogonal axes, 𝒛′ and 𝒙′, are rotated about the center of gravity through an angle, 

𝝋, then distances along the 𝒙′-axis from the origin have the following relationship with the reference axes. 

 

 𝑥′ = 𝑥 cos(𝜑) + 𝑧 sin (𝜑)  

 

 The moment of inertia about the 𝑧′ axis, 𝐼𝑧′, can be expressed in terms of the original axes and φ as shown in Eq. (4). 

 

𝐼𝑧′ =  ∫(𝑥′)2  𝑑𝑚 

 

=  ∫(𝑥 cos(𝜑) + 𝑧 sin(𝜑))2 𝑑𝑚 

 

= cos2(𝜑) ∫ 𝑥2𝑑𝑚 + 2 sin(𝜑) cos(𝜑) ∫ 𝑥𝑧 𝑑𝑚 + sin2(𝜑) ∫ 𝑧2𝑑𝑚 

 
 = 𝐼𝑧 cos2(𝜑) + 2𝐼𝑥𝑧 sin(𝜑) cos(𝜑) + 𝐼𝑥 sin2(𝜑) (4) 
 

The second term, 𝐼𝑥𝑧 , in the final expression is the product of inertia. If a mass element, 𝑚, has some distribution 

over an x-z coordinate system, the following integral defines the product of inertia of 𝑚. 

 

 𝐼𝑥𝑧 =  ∫ 𝑥𝑧 𝑑𝑚 (5) 
 

For the development of 𝐼𝑧′, if the reference set of axes are chosen to be principal axes of the body instead of the 

body axes, then the product of inertia is zero. The expression for 𝐼𝑧′ becomes: 

 

 𝐼𝑧′ = 𝐼𝑧𝑝 cos2(𝜑) + 𝐼𝑥𝑝 sin2(𝜑) (6) 

 

 The equation above then describes the value of the moment of inertia about any axis 𝑧′ in terms of the principal 

moments of inertia and the angle between the principal axes and the axis in question.  This equation was used to 

estimate the values of 𝐼𝑧𝑝  and 𝐼𝑥𝑝 for the aircraft.  The orientation of the principal axes were not known a priori, so 

the angle, 𝜑, could not be measured directly.  To account for this, the angle of the axis being tested was measured 

with respect to the body axes orientation, and the Eq. (6) was modified to include an offset, 𝜏. 

 

 𝐼𝑧′ = 𝐼𝑧𝑝 cos2(𝜃 − 𝜏) + 𝐼𝑥𝑝 sin2(𝜃 − 𝜏) (7) 
 

This offset, 𝜏, is the principal inclination angle, or the angle between the body axes and the principal axes.  The 

angle, 𝜃, is the measured angle between the axis being tested and the body x axis.   

B. Modeling Test Data 

As stated earlier, Eq. (7) above models the relation between the moments of inertia about any axis for the 

aircraft.  Modeling a particular aircraft’s mass properties with this equation requires values of 𝐼𝑧′ to be known for 
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different axes in the x-z plane.  MATLAB4 was used to perform the curve fitting.  Eq. (7) was used and 𝐼𝑧𝑝, 𝐼𝑥𝑝, and 

𝜏 were unknown parameters.  It is important to note that the pitch angle, 𝜃, is with respect to the x body axis.  

Values for the unknown parameters are estimated using a least squares error function minimization.  The least 

squares error is simply 

 

 𝐸𝑟𝑟𝑜𝑟 =  ∑(𝐼𝑧′ − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒)2 (8) 
 

The MATLAB4 optimization function FMINSEARCH was used to minimize the error function by varying the 

parameters 𝐼𝑧𝑝, 𝐼𝑥𝑝, and 𝜏.  Initial estimates for 𝐼𝑧𝑝, 𝐼𝑥𝑝, and 𝜏 are needed to ensure accuracy of the FMINSEARCH 

function.  𝜏 = 0, 𝐼𝑧𝑝 = 𝐼𝑧, and 𝐼𝑥𝑝 = 𝐼𝑥 are acceptable initial estimates because for most aircraft the principal 

inclination angle is small and thus the principal and body inertias are similar.  𝐼𝑧 and 𝐼𝑥  are the moments of inertia 

about the z and x body axes, respectively. After using the MATLAB4 optimization analysis for the error function, 

the values of 𝐼𝑧𝑝, 𝐼𝑥𝑝, and 𝜏 are discovered, and Eq. (7) above can be written for the specific aircraft in question.   

Note that in some testing cases, due to the design of the testing apparatus, it may not be possible for the 0° pitch 

and 90° pitch angles (𝐼𝑥 and 𝐼𝑧 respectively) to be tested exactly.  In these situations, the parametrically fit Eq. (7) 

could be used to evaluate the moments of inertia values for the x and z body axes.  Also note that in this sutation, the 

initial estimates used with FMINSEARCH would be the measurements closest to 0° pitch and 90° pitch.  An 

example of this situation occurring would be if the testing apparatus held the aircraft at pitch increments such as -5 

deg, 5 deg, 15 deg, etc. This situation occurred during testing of the UAV at NASA Armstrong and will be discussed 

more later. 

III. Determination of Product of Inertia Ixz 

After the principal inclination angle, 𝜏, has been determined, a simple equation can be used to calculate the 

product of inertia.  Once again start with the relationship between two pairs of orthogonal axes going through the 

center of gravity of an aircraft; where 𝑥′ and 𝑦′ are orthogonal axes that are rotated at an angle 𝜏 from x and y. 

 

 𝑥′ = 𝑥𝑐𝑜𝑠 𝜏 + 𝑧𝑠𝑖𝑛 𝜏 (9) 
 𝑧′ = 𝑧𝑐𝑜𝑠 𝜏 − 𝑥𝑠𝑖𝑛 𝜏  

 

The moment of inertia about the 𝑥′ axis, 𝐼𝑥′, can be written in terms of x and y 

 

 𝑑𝐼𝑥′ = 𝑧′2𝑑𝑚 = (𝑧𝑐𝑜𝑠 𝜏 − 𝑥𝑠𝑖𝑛 𝜏)2𝑑𝑚 (10) 
 

Integrating the equation above and substituting the mathematical definition of moment of inertia yields 

 

 𝐼𝑥′ = 𝐼𝑥 cos2 𝜏 + 𝐼𝑧 sin2 𝜏 − 2𝐼𝑥𝑧 sin 𝜏 cos 𝜏  
 

and using trigonometric identities allows that equation to simply be rewritten as 

 

 𝐼𝑥′ =
𝐼𝑥+𝐼𝑧

2
+

𝐼𝑥−𝐼𝑧

2
cos 2𝜏 − 𝐼𝑥𝑧 sin 2𝜏  

 
This equation is now a representation of the moment of inertia about an arbitrary axis, written as a function of 

the moments of inertia about two other orthogonal axes, their product of inertia, and the angle between the different 

coordinate frames.  The product of inertia in the equation above is the product of inertia in the body coordinate 

frame that we are interested in. 

 
𝑑 𝐼𝑥′

𝑑𝜏
= −2 (

𝐼𝑥 − 𝐼𝑧

2
) sin 2𝜏 − 2𝐼𝑥𝑧 cos 2𝜏 = 0 

 

Taking the derivative and setting the equation equal to zero allows us to now have an equation where τ is the 

principal inclination angle.  This occurs because the manipulation of the equation finds the max value of 𝐼𝑥′, which 

is along one of the principal axes. 
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 tan 2𝜏 =
−2𝐼𝑥𝑧

𝐼𝑥−𝐼𝑧
 (11) 

 

Rearrangement yields Eq. (11) above.  This equation allows us to directly calculate the product of inertia 𝐼𝑥𝑧  in 

the body coordinate system by only knowing 𝐼𝑥 and 𝐼𝑧 in the body coordinate system, and the principal inclination 

angle 𝜏.  The values of 𝐼𝑥 and 𝐼𝑧 are measured experimentally as mentioned before.  In the special case when the 

experimental setup does not measure these values specifically, they can be found from Eq. (7) after it is fit to the 

collected data.  Note that in this derivation, the angle, 𝜏, is the angle from the body axes to the principal axes, and 

not the other way around.  If done incorrectly, the sign of the product of inertia will be different. 

IV. NASA Armstrong PRANDTL-D Aircraft Example 

 The technique for determining the products of inertia for a small scale UAV was used at NASA Armstrong 

on the PRANDTL-2 flying wing aircraft.  The aircraft is part of the PRANDTL-D project which is investigating the 

aerodynamic characteristics of the bell shaped lift distribution and its potential application in commercial aviation.  

Processing data from the experimental test flights requires the mass properties of the aircraft to be known, including 

the products of inertia. 

As mentioned earlier in this report, small scale UAV type aircraft are most suited to using this technique.  This 

method requires moments of inertia to be calculated about many different axes of the test object, which could 

potentially be difficult for larger objects due to testing apparatus constraints.  However, this method could 

theoretically be used with any solid body.   

 Determining the moments of inertia for a complicated geometric body requires experimental testing methods.  

The method used at NASA Armstrong for the PRANDTL-D aircraft is the commonly used bifilar pendulum method.  

Additionally, a specialized procedure presented by Jardin and Mueller3 was used for greater accuracy.  This method 

includes a higher fidelity dynamic model of the testing device than previous methods.  It also accounts for 

aerodynamic drag, viscous damping of the motion, and is based on a nonlinear model.  A MATLAB4 Simulink 

model is used to perform a parameter estimation technique to match the nonlinear model to the observed oscillation 

data, thus generating the moment of inertia values. 

A. Bifilar Pendulum Testing Apparatus 

The testing apparatus for the bifilar pendulum test was specially designed to enable the moment of inertia values 

to be tested at a range of pitch angles.  Below is a picture of the testing apparatus holding the PRANDTL-D flying 

wing aircraft, and the aircraft during flight tests. 

 

Figure 1. NASA Armstrong PRANDTL-D Aircraft (left) and Bifilar Pendulum Test Rig (right) 
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 As shown in the picture above, the testing apparatus consists of two circular plywood pieces.  An airfoil shaped 

cut in the middle of the circular pieces allows them to slide over the sides of the aircraft wing to hold it in a fixed 

orientation.  The holes on the outside of the disks are spaced at ten degree increments and reinforced with metal 

washers modified to have a knife edge inner surface.  For the bifilar pendulum setup, the aircraft is hung by metal S 

hooks modified to have knife edges at the contact point with the disk’s washers.   

 The aircraft sits so the center of gravity is located between the filars, and the pivot point where the assembly is 

hung allows the aircraft center of gravity to fall within the plane of the filars.  This ensures that you are testing the 

moment of inertia about an axis that runs through the center of gravity, which is critical to getting accurate results.  

However, this also means that each tested pitch position may not be exactly ten degrees different, even though the 

mounting holes are spaced by ten degrees.  Due to this side effect, it is important to measure the true x body axis 

angle (pitch angle) for each test and not just assume the pitch angle from the test apparatus design.  Although this is 

inconvenient, it does not have an adverse effect on the results.   

 The most important aspect of the apparatus is that it enabled us to test for moments of inertia about many 

different axes.  A wireless inertial measurement unit was attached to the rig to measure the angular rate data that was 

required for the post processing described earlier.  The pendulum swinging motion was initiated by hand and at 

small disturbance angles.  IMU data was streamed live to a laptop, and runs with unacceptable amounts of noise or 

secondary motions were stopped.  The system was then allowed to settle before continuing with a new test run.  

Some coupling was expected in the motion about different axes, so unacceptable secondary motions were 

considered to be oscillations or motion with magnitudes that were above reasonable.   

B. Bifilar Pendulum Test Results 

Using the method presented by Jardin and Mueller3 the aircraft was tested at approximately ten degree 

increments for a total of 18 different pitch angles.  The results of the experiment are shown in the figure below. 

 

 
Figure 2. PRANDTL-D Bifilar Pendulum Moments of Inertia 

 

Three trials were run at each pitch angle.  Each trial was post processed with the MATLAB4 Simulink model 

discussed earlier to find the moment of inertia.  All three calculated moment of inertia values at each pitch angle are 

plotted in Fig. 2.  Note that the values presented above are the entire test setup moment of inertia minus the test rig 

moment of inertia.  As mentioned, the test setup system consisted of both the aircraft and the rig.  The test rig 

inertias were tested separately and were subtracted for the test setup system values in order to isolate the aircraft’s 

properties.  A standard deviation error analysis of the values at each angle is presented later in this report. 
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C. Determination of Product of Inertia from PRANDTL-D Data 

Using the FMINSEARCH function in MATLAB4 , the least squares error, Eq. (8), was minimized, where 𝐼𝑧′ was 

given in Eq. (7).  𝐼𝑧𝑝, 𝐼𝑥𝑝, and 𝜏 were parameters that were varied in the FMINSEARCH function, and the angle 𝜃 

was the angle collected from the experimental data.  The predicted parameters were then used to plot an estimation 

of the moment of inertia and the errors were calculated. 

As can be seen in the results shown in Fig. 3 below, the principal inclination angle was approximated as 𝜏 = 2.1°.  

The data points are the same as in Fig. 2, and the blue dashed line is the least squares fit of Eq. (7).  The red dotted 

line shows the location of the principal axis with respect to the body axes.  The moments of inertia about the body 

axes are also shown in the figure.   

 

 

 
Figure 3. PRANDTL-D Processed MOI Data, Principal Inclination Angle Determination 

 

 Two errors were calculated for this example: average coefficient of variation of the raw data and root mean 

square error for the model least squares regression. 

 

Table 1. PRANDTL-D Error Analysis 

 
σ Coefficient of Variation 

Raw Data 0.0045 0.1744% 

 

 
RSME [slugs-ft2] 

Linear Regression 0.0125 

 

  

 The standard deviation for the raw test data is the average of all standard deviations between test points at each 

angle.  For the raw data, the coefficient of variation shows that one standard deviation is quite a bit less than 1% of 
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the mean, which demonstrates the high precision and repeatability of the experiment.  The root mean square error 

for the linear regression curve shows that the fit line is also less than 1% of the average moment of inertia value.  

This suggests that the fit of the predicted curve is very close to the test data. 

 For visual purposes, the moments of inertia and estimation results are also plotted in polar coordinates to 

demonstrate the elliptical shape of the moment of inertia-axis position relationship. 

 

 
Figure 4. Ellipse of Inertia for PRANDTL-D Aircraft 

 

 Note that the red dotted axes are still the principal axes of the body.  As can be seen, the principal axes are 

oriented such that if the aircraft was pitched nose up from horizontal by the angle 𝜏, then the principal x axis would 

be parallel to horizontal.  This is shown graphically in the figure below. 

 
Figure 5. Principal and Body Axes Orientation 
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 Now that the principal inclination angle, 𝜏, and the x and z body axis moments of inertia are known, the product 

of inertia can be calculated using Eq. (11).  As discussed earlier, the principal inclination angle value used in Eq. 

(11) is the angle from the body axes to the principal axes.  In this case, 𝜏 is positive, based on the coordinate frame 

convention (as shown in the figure above).  𝐼𝑥𝑧  was calculated for the PRANDTL-D aircraft and the result is shown 

in Table 2 below.   

 

Table 2. PRANDTL-D Product of Inertia 

𝐼𝑥 2.3596 slugs ft2 

𝐼𝑧 2.8477 slugs ft2 

𝜏 2.0875° 

𝑰𝒙𝒛 0.0178 slugs ft2 

  

V. Conclusion 

Mass properties of aircraft are important characteristics to know.  There are several developed techniques for 

experimentally determining the moments of inertia of aircraft, but not as many methods for determining the products 

of inertia.  Current methods include calculating the product of inertia by knowing the moments of inertia about two 

orthogonal axes and a third angle in the same plane, and the angle between the third angle and the other axes.  This 

method requires very precise measurements to be accurate.  Another method uses a single point suspension test rig 

with a spring plane that opposes yaw and roll motion.  This method is complex and requires a lot of setup and 

consideration.  This new method provides a way to reliably determine the product of inertia experimentally while 

requiring only a simple experiment to be conducted.  The main limitation of this method is that the test rig must be 

constructed to allow the aircraft to be mounted at different pitch angles, which could be difficult for some vehicles.  

For example it could limit the method’s ability to be applied to large or heavy bodies.  However, this technique is 

well suited for small scale UAV research aircraft. 

Appendix 

An alternate derivation of the equations that relate the moments of inertia about different axes to the angles 

between them (Eq. (6)) is shown here.  This method also includes an alternate variation of the equation that 

calculates the product of inertia based on the principal inclination angle and the body axes moments of inertia (Eq. 

(11)). 

 The equation for the ellipse of inertia for the aircraft, with the center at the center of mass, has the form: 

 

 𝐼𝑥𝑥2 + 𝐼𝑧𝑧2 + 2𝐼𝑥𝑧𝑥𝑧 = 1 (12) 

 

 Assuming that the ellipse is aligned with the principal axes of the aircraft, this equation can be simplified 

because the product of inertia is zero. 

 

 𝐼𝑥𝑝𝑥𝑝
2 + 𝐼𝑧𝑝𝑧𝑝

2 = 1 (13) 

 

 Moment of inertia values along any axis in the xz plane can be found by considering a simple coordinate frame 

transformation.  In the figures below, it can be seen graphically that the values of the moment of inertia can be found 

about any axis by employing the rotation to the equation of the standard aircraft ellipse about the principal axes. 
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 𝑥𝑝 = 𝑥𝑐𝑜𝑠 𝜃 − 𝑧𝑠𝑖𝑛 𝜃 

 𝑧𝑝 = 𝑧𝑐𝑜𝑠 𝜃 + 𝑥𝑠𝑖𝑛 𝜃  

 

 These values are then substituted into Eq. (13) above and rearranged. 

 

 (𝐼𝑥𝑝 cos2 𝜃 + 𝐼𝑧𝑝 sin2 𝜃)𝑥2  +  (𝐼𝑥𝑝 sin2 𝜃 + 𝐼𝑧𝑝 cos2 𝜃)𝑧2 + 2 sin 𝜃 cos 𝜃 (𝐼𝑧𝑝 − 𝐼𝑥𝑝)𝑥𝑧 =  1 (14) 

 

 Notice that this equation is of the same form as Eq. (12), for an ellipse of inertia of the aircraft about any set of 

axes.  The coefficients can be equated to give: 

 

 𝐼𝑥 = 𝐼𝑥𝑝 cos2 𝜃 + 𝐼𝑧𝑝 sin2 𝜃 (15) 

 𝐼𝑧 = 𝐼𝑥𝑝 sin2 𝜃 + 𝐼𝑧𝑝 cos2 𝜃 (16) 

 

These are the equations derived earlier, Eq. (6), where the moment of inertia about any axis can be found given 

the principal moments of inertia and the angle between the axes.  Furthermore, an equation for product of inertia can 

be found.  Note that now 𝜃 is actually 𝜏, the principal inclination angle.  Once again equating the coefficients 

between Eq. (14) and Eq. (12) gives 

 

 𝐼𝑥𝑧 = sin 𝜏 cos 𝜏 (𝐼𝑧𝑝 − 𝐼𝑥𝑝)  

 

Multiplying both sides by (cos2 𝜏 − sin2 𝜏) gives 

 

(cos2 𝜏 − sin2 𝜏)𝐼𝑥𝑧 = sin 𝜏 cos 𝜏 (𝐼𝑧𝑝 − 𝐼𝑥𝑝)(cos2 𝜏 − sin2 𝜏) 

 

Then distributing values on the right hand side and using trigonometric identities 

 

2(cos 2𝜏)𝐼𝑥𝑧 = sin 2𝜏 (𝐼𝑧𝑝 cos2 𝜏 + 𝐼𝑥𝑝 sin2 𝜏 − 𝐼𝑥𝑝 cos2 𝜏 − 𝐼𝑧𝑝 sin2 𝜏) 

 

Algebraically rearrange, and then use another trigonometric identity as well as substituting Eq. (15, 16) 

 
2𝐼𝑥𝑧

(𝐼𝑧𝑝 cos2 𝜏 + 𝐼𝑥𝑝 sin2 𝜏) − (𝐼𝑥𝑝 cos2 𝜏 + 𝐼𝑧𝑝 sin2 𝜏)
=

sin 2𝜏

cos 2𝜏
 

 

 
−2𝐼𝑥𝑧

𝐼𝑥−𝐼𝑧
= tan 2𝜏 (17) 

 

Eq. (17) is identical to Eq. (11). 
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